Abstract

The accuracy of depth judgments that are based on binocular disparity or structure from motion (motion parallax and object rotation) was studied in 3 experiments. In Experiment 1, depth judgments were recorded for computer simulations of cones specified by binocular disparity, motion parallax, or stereokinesis. In Experiment 2, judgments were recorded for real cones in a structured environment, with depth information from binocular disparity, motion parallax, or object rotation about the y-axis. In both of these experiments, judgments from binocular disparity information were quite accurate, but judgments on the basis of geometrically equivalent or more robust motion information reflected poor recovery of quantitative depth information. A 3rd experiment demonstrated stereoscopic depth constancy for distances of 1 to 3 m using real objects in a well-illuminated, structured viewing environment in which monocular depth cues (e.g., shading) were minimized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.