Abstract
To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly rainfall intensity (R) using data from 289 precipitation events in Shanghai between September 2020 and March 2024. Two Z-R relationship models were compared in terms of their fitting performance: Z = 270.81 R1.09 (empirically fitted relationship) and Z = 300 R1.4 (standard relationship). The results show that the Z = 270.81 R1.09 model outperforms the Z = 300 R1.4 model in terms of fitting accuracy. Specifically, the Z = 270.81 R1.09 model more effectively captures the nonlinear relationship between radar reflectivity and rainfall intensity, with a higher degree of agreement between the fitted curve and the observed data points. This model demonstrated superior performance across all 289 precipitation events. This study evaluated the performance of four machine learning approaches while incorporating five meteorological features: specific differential phase shift (KDP), echo-top height (ET), vertical liquid water content (VIL), differential reflectivity (ZDR), and correlation coefficient (CC). Nine QPE models were constructed using these inputs. The key findings are as follows: (1) For models with a single-variable input, the KAN deep learning model outperformed Random Forest, Gradient Boosting Decision Trees, Support Vector Machines, and the traditional Z-R relationship. (2) When six features were used as inputs, the accuracy of the machine learning models improved significantly, with the KAN deep learning model outperforming other machine learning methods. Compared to using only radar reflectivity, the KAN deep learning model reduced the MRE by 20.78%, MAE by 4.07%, and RMSE by 12.74%, while increasing the coefficient of determination (R2) by 18.74%. (3) The integration of multiple meteorological features and machine learning optimization significantly enhanced QPE accuracy, with the KAN deep learning model performing best under varying meteorological conditions. This approach offers a promising method for improving radar-based QPE, particularly considering seasonal, weather system, and precipitation stage differentiation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.