Abstract

In March 2020, the World Health Organization declared COVID-19 a global pandemic, necessitating an understanding of factors influencing severe disease outcomes. High COVID-19 hospitalization rates underscore the need for robust risk prediction tools to determine estimated risk for future hospitalization for outpatients with COVID-19. We introduced the "COVID-19 Risk Tier Assessment Tool" (CRTAT), designed to enhance clinical decision-making for outpatients. We investigated whether CRTAT offers more accurate risk tier assignments (RTAs) than medical provider insights alone. We assessed COVID-19-positive patients enrolled at Emory Healthcare's Virtual Outpatient Management Clinic (VOMC)-a telemedicine monitoring program, from May 27 through August 24, 2020-who were not hospitalized at the time of enrollment. The primary analysis included patients from this program, who were later hospitalized due to COVID-19. We retroactively formed an age-, gender-, and risk factor-matched group of nonhospitalized patients for comparison. Data extracted from clinical notes were entered into CRTAT. We used descriptive statistics to compare RTAs reported by algorithm-trained health care providers and those produced by CRTAT. Our patients were primarily younger than 60 years (67% hospitalized and 71% nonhospitalized). Moderate risk factors were prevalent (hospitalized group: 1 among 11, 52% patients; 2 among 2, 10% patients; and ≥3 among 4, 19% patients; nonhospitalized group: 1 among 11, 52% patients, 2 among 5, 24% patients, and ≥3 among 4, 19% patients). High risk factors were prevalent in approximately 45% (n=19) of the sample (hospitalized group: 11, 52% patients; nonhospitalized: 8, 38% patients). Approximately 83% (n=35) of the sample reported nonspecific symptoms, and the symptoms were generally mild (hospitalized: 12, 57% patients; nonhospitalized: 14, 67% patients). Most patient visits were seen within the first 1-6 days of their illness (n=19, 45%) with symptoms reported as stable over this period (hospitalized: 7, 70% patients; nonhospitalized: 3, 33% patients). Of 42 matched patients (hospitalized: n=21; nonhospitalized: n=21), 26 had identical RTAs and 16 had discrepancies between VOMC providers and CRTAT. Elements that led to different RTAs were as follows: (1) the provider "missed" comorbidity (n=6), (2) the provider noted comorbidity but undercoded risk (n=10), and (3) the provider miscoded symptom severity and course (n=7). CRTAT, a point-of-care data entry tool, more accurately categorized patients into risk tiers (particularly those hospitalized), underscored by its ability to identify critical factors in patient history and clinical status. Clinical decision-making regarding patient management, resource allocation, and treatment plans could be enhanced by using similar risk assessment data entry tools for other disease states, such as influenza and community-acquired pneumonia. The COVID-19 pandemic has accelerated the adoption of telemedicine, enabling remote patient tools such as CRTAT. Future research should explore the long-term impact of outpatient clinical risk assessment tools and their contribution to better patient care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.