Abstract
Stem rust of wheat is a deleterious fungal disease across the globe causing severe yield losses. Although, many stem rust resistance genes (Sr) are being used in wheat breeding programs, new emerging stem rust pathotypes are a challenge to importantSrgenes. In recent years, multiple studies on leaf and yellow rust molecular mechanism have been done, however, for stem rust such studies are lacking. Current study investigated stem rust induced response in the susceptible wheat genotype C306 and its Near Isogenic Line (NIL) forSr24gene, HW2004, using microarray analysis to understand the transcriptomic differences at different stages of infection. Results showed that HW2004 has higher basal levels of several important genes involved in pathogen detection, defence, and display early activation of multiple defence mechanisms. Further Gene Ontology (GO) and pathway analysis identified important genes responsible for pathogen detection, downstream signalling cascades and transcription factors (TFs) involved in activation and mediation of defence responses. Results suggest that generation of Reactive Oxygen Species (ROS), cytoskeletal rearrangement, activation of multiple hydrolases, and lipid metabolism mediated biosynthesis of certain secondary metabolites are collectively involved inSr24-mediated defence in HW2004, in response to stem rust infection. Novel and unannotated, but highly responsive genes were also identified, which may also contribute towards resistance phenotype. Furthermore, certain DEGs also mapped close to theSr24-linked marker onThinopyrum elongatumtranslocated fragment on wheat 3E chromosome, which advocate further investigations for better insights of theSr24-mediated stem rust resistance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have