Abstract
BackgroundPinus sylvestris, P. mugo, P. uliginosa and P. uncinata are closely related but phenotypically and ecologically very distinct European pine species providing an excellent study system for analysis of the genetic basis of adaptive variation and speciation. For comparative genomic analysis of the species, transcriptome sequence was generated for 17 samples collected across the European distribution range using Illumina paired-end sequencing technology.ResultsDe novo transcriptome assembly of a reference sample of P. sylvestris contained 40968 unigenes, of which fewer than 0.5% were identified as putative retrotransposon sequences. Based on gene annotation approaches, 19659 contigs were identified and assigned to unique genes covering a broad range of gene ontology categories. About 80% of the reads from each sample were successfully mapped to the reference transcriptome of P. sylvestris. Single nucleotide polymorphisms were identified in 22041-24096 of the unigenes providing a set of ~220-262 k SNPs identified for each species. Very similar levels of nucleotide polymorphism were observed across species (π=0.0044-0.0053) and highest pairwise nucleotide divergence (0.006) was found between P. mugo and P. sylvestris at a common set of unigenes.ConclusionsThe study provides whole transcriptome sequence and a large set of SNPs to advance population and association genetic studies in pines. Our study demonstrates that transcriptome sequencing can be a very useful approach for development of novel genomic resources in species with large and complex genomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1401-z) contains supplementary material, which is available to authorized users.
Highlights
Pinus sylvestris, P. mugo, P. uliginosa and P. uncinata are closely related but phenotypically and ecologically very distinct European pine species providing an excellent study system for analysis of the genetic basis of adaptive variation and speciation
We found less than 0.5% of the unigenes contained such sequences, which is lower than has been found in other plants and pine species
170 contigs were identified as putative retrotransposon sequences and they were discarded providing a final set of 40798 high quality unigenes and a total reference transcriptome of 61,246,267 bp (Table 2, Additional file 1)
Summary
P. mugo, P. uliginosa and P. uncinata are closely related but phenotypically and ecologically very distinct European pine species providing an excellent study system for analysis of the genetic basis of adaptive variation and speciation. We focus on a group of four closely related European pines: Scots pine (Pinus sylvestris L.) and the three taxa comprising the P. mugo complex including P. mugo Turra (dwarf mountain pine), P. uncinata Ramond (mountain pine) and P. uliginosa Neumann (peat-bog pine). These species differ from each other in phenotype, total population size, geographical distribution and ecology, in particular for traits related to dehydrative stress and temperature [6,7,8]. Pinus sylvestris is one of the most ecologically and economically important forest tree species
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have