Abstract
BackgroundThe genetic basis of wing development has been well characterised for model insect species, but remains poorly understood in phylogenetically divergent, non-model taxa. Wing-polymorphic insect species potentially provide ideal systems for unravelling the genetic basis of secondary wing reduction. Stoneflies (Plecoptera) represent an anciently derived insect assemblage for which the genetic basis of wing polymorphism remains unclear. We undertake quantitative RNA-seq of sympatric full-winged versus vestigial-winged nymphs of a widespread wing-dimorphic New Zealand stonefly, Zelandoperla fenestrata, to identify genes potentially involved in wing development and secondary wing loss.ResultsOur analysis reveals substantial differential expression of wing-development genes between full-winged versus vestigial-winged stonefly ecotypes. Specifically, of 23 clusters showing significant similarity to Drosophila wing development-related genes and their pea aphid orthologues, nine were significantly upregulated in full-winged stonefly ecotypes, whereas only one cluster (teashirt) was substantially upregulated in the vestigial-winged ecotype.ConclusionsThese findings suggest remarkable conservation of key wing-development pathways throughout 400 Ma of insect evolution. The finding that two Juvenile Hormone pathway clusters were significantly upregulated in vestigial-winged Zelandoperla supports the hypothesis that Juvenile Hormone may play a key role in modulating insect wing polymorphism, as has previously been suggested for other insect lineages.
Highlights
The genetic basis of wing development has been well characterised for model insect species, but remains poorly understood in phylogenetically divergent, non-model taxa
Previous studies of wing-dimorphic species have suggested that wing polymorphism can be genetically determined [23,24,25,26,27], controlled by environmentally driven gene expression, include both genetic and environmental components [31], or be under the control of epigenetic factors [32, 33]
De novo assembly using Trinity generated 552,851 transcripts hierarchically clustered into 442,924 Trinity ‘genes’, with a mean length of 587.6 bp and an N50 of 887 bp (Additional file 1: Table S2). 98.6% of BUSCO proteins were identified as full-length proteins, with only 1.0% fragmented and 0.4% missing (Additional file 1: Table S2)
Summary
The genetic basis of wing development has been well characterised for model insect species, but remains poorly understood in phylogenetically divergent, non-model taxa. Wing-polymorphic insect species potentially provide ideal systems for unravelling the genetic basis of secondary wing reduction. Wing evolution has carried numerous advantages, including an increased ability for insects to access novel resources and ecosystems, improved predator avoidance, and enhanced mate location [1]. This dispersal capacity has, been subsequently lost in numerous insect lineages, across almost all winged orders [6, 7]. As the distinct phenotypes of wing-dimorphic species have very similar genetic backgrounds, such taxa present ideal systems for exploring the molecular basis of wing loss. Previous studies of wing-dimorphic species have suggested that wing polymorphism can be genetically determined [23,24,25,26,27], controlled by environmentally driven gene expression (polyphenism; [11, 28,29,30]), include both genetic and environmental components [31], or be under the control of epigenetic factors [32, 33]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have