Abstract
Bathymodiolus platifrons adapted the chemosynthetic ecosystems, both cold seeps and hydrothermal vents, by harbouring gill symbionts. To survive these extreme and volatile ecological niches, the host mussel must be able to strictly regulate the symbionts in response to the environmental fluctuations. However, despite the research efforts, the molecular mechanisms governing host-symbiont interaction in deep-sea mussels are still largely unknown. Here, using the model deep-sea mussel Bathymodiolus plantiforns, we profiled the transcriptomic dynamic of the mussel gill during the loss and re-contact with symbionts with RNA-seq technology. The analysis of DEGs between untreated and symbiont loss samples revealed that metabolic and cellular organizational changes in the gill were associated with increased ribosomal activities, ubiquitin-proteasome systems, and autophagy. Meanwhile, the DE immune genes suggest that the host recognizes and interacts with endosymbionts through the pattern recognizing receptors, especially the Toll-like receptors. In addition, the DEGs between symbionts treated and environmental bacteria treated samples shed light on the mechanism of symbiont recognition. The symbionts treatment not only partially reversed the transcriptomic changes caused by symbiont-loss, but also suppressed host immune system which might facilitate the symbionts’ entrance and survival in the host bacteriocytes. All together, these results suggest that the host-symbiont system in B. platifrons is tightly regulated but also with plasticity to fit environmental fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Deep Sea Research Part I: Oceanographic Research Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.