Abstract

Foot color is an important trait in Paphia undulata that influences consumer selection. To elucidate the molecular basis of foot color, six transcriptome libraries of P. undulata with different foot colors were constructed: white (L2, L3 and L4) and orange (D2, D3, D4). There is a significant difference in color index (L⁎, a⁎, b⁎) between the two groups (P < 0.05). These six paired-end libraries were sequenced using the Illumina HiSeq 2500 platform. In total, 48.22 Gb of clean data were obtained and de novo assembled into 58,159 unigenes with a mean length of 889.51 bp and N50 of 1461 bp. A total of 19,070 unigenes were significantly matched to known unique proteins. The Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to determine metabolic pathways and candidate genes associated with foot color traits. Compared with white P. undulate, a total of 107 transcripts were identified as differentially expressed genes (DEGs) in orange samples using Cuffdiff, including 74 up-regulated and 33 down-regulated genes. Of these differentially expressed genes, many were involved in the synthesis and transport of carotenoids and pigment biosynthesis. Additionally, results of the transcriptome analysis were verified by quantitative real-time PCR (qRT-PCR). Overall, this experiment discovered several potential foot coloration genes and related molecular mechanisms using RNA-seq, which paves the way for further functional elucidation of color-related genes and assists selective breeding practices in P. undulata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call