Abstract
In order to replace conventional diesel, biodiesel from various feedstocks is being researched for diesel engines. This study explores novel biodiesel blends produced from unconventional resources such as mentha piperita (peppermint), pontederia crassipes (water hyacinth), tamarindus indica (tamarind), and trichosanthes cucumerina (snake gourd) to assess the outcomes of a diesel engine. The fuel samples are designated as MP20, PC20, TC20, and TI20, which consist of 80% biodiesel and 20% diesel. The assessment is carried out on a four-stroke, one-cylinder diesel engine that is water-cooled and set to operate at 1500rpm with a 17.5 compression ratio under various engine loading scenarios with quarter-incremental loading from one-fourth to full loading conditions. The fuel samples are injected with 220bar injection pressure into the combustion chamber 23° before TDC. An extensive analysis of engine parameters is performed using engine configuration, fuel characteristics, and applied boundary conditions. This comprises brake-specific energy consumption (BSEC), fuel consumption (BSFC), thermal efficiency (BTE), cylinder pressure (CP), heat release rate (HRR), particulate matter (PM), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions. At 100% load, the biodiesel blends show an increase in BSFC (2.8-12.6%) and BSEC (1.1-7.1%) but a minor decrease in CP (0.9-6.9%), HRR (0.8-16.2%), and BTE (1.2-2.9%). For biodiesel blends at full engine load, the emissions of PM (8.9-21.4%), NOx (1.4-16.2%) and CO2 (2.4-7.9%) are all significantly reduced. The results emphasize the distinct benefits of biodiesel blends, demonstrating enhanced engine performance and substantial decreases in emissions, which supports the aim of providing sustainable energy solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.