Abstract
A monitoring system based on a flow-cell detector was developed for measuring the tritium concentration in water. The flow-cell detector was fabricated using a granular CaF2 solid scintillator. This system does not use a liquid scintillation cocktail and does not generate radioactive organic liquid waste. Moreover, continuous real-time measurements are possible, in contrast to a liquid scintillation counting system, which requires batch measurements. For further development of the system, four flow-cell detectors were fabricated. They included a single 3-mm-diameter cell, three 3-mm-diameter cells in series, a single 5-mm-diameter cell, and three 5-mm-diameter cells in series.Continuously flowing water containing tritium at various concentrations was passed through the flow cells, and tritium count were measured for 600 and 10000 s. Investigating the relation between the count rate and concentration, the three 5-mm-diameter cells were most sensitive, with a linear relation maintained down to approximately 2 Bq/mL and 10 Bq/mL for 10000- and 600-s measurements, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.