Abstract
The dissolution behaviors of octacalcium phosphate (OCP), β-tricalcium phosphate (β-TCP), and hydroxyapatite (HA) were compared by implanting the materials in rat subcutaneous pouches for 8 weeks using a filter chamber or immersing them in simulated body fluid (SBF) or Tris-HCl buffer for 2 weeks at pH 7.4 and 37(o)C. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis were conducted on these materials. Degree of supersaturation (DS) in the two solutions immersed with each calcium phosphate material was calculated from their chemical compositions. The results showed that OCP partially converted to apatitic crystals, while β-TCP and HA remained unchanged after the implantation. The DS of the SBF solution remained slightly supersaturated with respect to OCP and β-TCP, but slightly undersaturated in the Tris-HCl buffer. These findings suggest that previously reported OCP and β-TCP biodegradation could be induced through cell-mediated osteoclastic resorption rather than a simple dissolution process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.