Abstract

The degradation of phenol by pulsed discharge plasma above a liquid surface (APDP) and under a liquid surface (UPDP) was compared. The effects of discharge voltage, discharge distance, initial solution conductivity and initial pH on the removal of phenol were studied. It was concluded that the removal of phenol increases with increasing discharge voltage and with decreasing discharge distance in both APDP and UPDP systems. An increase in the initial solution’s conductivity has a positive effect in the APDP system but a negative effect in the UPDP system. In addition, alkaline conditions are conducive to the degradation of phenol in the APDP system, while acidic conditions are conducive in the UPDP system. Free radical quenching experiments revealed that ·O− 2 has an important influence on the degradation of phenol in the APDP system, while ·OH plays a key role in the UPDP system. This paper verifies the differences in the two discharge methods in terms of phenol removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.