Abstract

Performance of small scale wind turbine (SSWT) and miniature aerial vehicles (MAV) is always effected with Laminar separation bubble. The problem of a laminar separation bubble on the upper surface of an E216 airfoil operated at low Reynolds number (Re=100000) is investigated numerically. Incompressible steady two-dimensional simulation is carried out with Transition γ − Reθ turbulence model on the airfoil with a boundary layer trip (BLT). The performance of two different types of trips, namely, isosceles triangular (IT) and right-angled triangular (RA) is compared with that of the airfoil with a rectangular (RT) trip. The trip locations used are, 17% of the chord for location-1 and 10% of the chord for location-2 from the leading edge of the airfoil, while the trip heights selected are 0.3 mm, 0.5 mm, 0.7 mm, and 1 mm. Results showed that the boundary layer trip significantly affected the laminar separation and improved the aerodynamic performance of the airfoil. Maximum improvement in drag by 17.41% and corresponding lift to drag ratio by 10.86% are obtained for the isosceles trip at location-2 for the angle of attack of 6°. There is no observable advantage for isosceles and right-angled triangular trips over rectangular trips. Considering the geometrical complexity in fabrication, the rectangular trip is recommended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.