Abstract

In this study, two approaches to investigating the process cooling of a heated sphere were performed using air as well as air/water mist two-phase flow. Steady-state and unsteady heat transfer analysis were compared in the terms of the aver-age surface temperature and heat transfer rate between the sphere surfaces and the cooling fluid. When the Bi < 0.1, the temperature variation inside sphere can be neglected and the wildly known lumped capacitance model can be applied to estimate the heat transfer coefficient by measuring the sphere surface temperature. The effect of the different factors such as the inlet Reynolds numbers, surface temperature and water mist rate on heat transfer characteristics are examined. The experimental results showed that the presence of water mist leads to a significant increase in heat transfer rate over the use of air coolant alone. Also, the un-steady thermal behaviors of the water mist impingement on the heated surface and dynamic-state of cooling process changing over the sphere surface were analyzed experimentally based on the unsteady surface temperature measurements. The experimental results of the unsteady heat transfer were compared to the results obtained from steady-state estimation under the corresponding surface temperature of the sphere. Moreover, the new proposed empirical correlation for the Nusselt number based on the present experimental data are given for practical uses. Results reasonably agree well within ?3.8%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.