Abstract

Personalized laser powder bed fusion (PBF-LB/M) Ti-6Al-4V (TC4) has a broader application prospect than that of traditional casting. In this paper, the composition and corrosion resistance of the passive film formation mechanism of TC4 prepared by optimization of PBF-LB/M techniques and traditional casting were systematically studied in 0.9 wt.% NaCl at 37 °C by electrochemical technique and surface analysis. The rates of the passive film formation process, corrosion resistance and composition of TC4 show different characteristics for the different preparation processes. Although the rate of passive film formation of cast-TC4 was higher at the initial immersion, the open circuit potential was more positive, and the film thickness was larger after stabilization, those facts show no positive correlation with corrosion resistance. On the contrary, with no obvious defects on the optimized PBF-LB/M-TC4, the passive film resistance is 2.5 times more, the defect concentration is reduced by 30%, and the TiO2 content is higher than that of the cast-TC4, making the martensitic-based PBF-LB/M-TC4 exhibit excellent corrosion resistance. This also provides good technical support for the further clinical application of PBF-LB/M-TC4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.