Abstract
AbstractTo enhance the mechanical and constructional performance of the ultra‐high performance concrete (UHPC) beams, the steel plate placed at the bottom surface of the UHPC beam is utilized to replace the ordinary steel rebars. In this paper, four 3.2 m UHPC T‐shaped beams with different reinforcement patterns of ordinary steel rebars and external steel plate were fabricated and comparatively tested under flexure loading. Their damage patterns, load versus deflection behavior, flexural capacity, load versus strain behavior, moment versus curvature behavior, stiffness, and crack development were investigated. The flexural experiments indicated that the external steel plate, positioned at the bottom surface of the UHPC members, could resolve the difficulty of installing ordinary steel rebars in slender UHPC components and improve its constructional performance. Compared with the inside steel rebar reinforcement, the employment of the steel plate at the bottom surface of the UHPC beam can effectively increase the distance from the neutral axis to the tensile reinforcement at the serviceability and ultimate states, thereby improving its flexural capacity and stiffness. Additionally, the configuration of the external steel plate was beneficial to reduce the tensile stress level of the tensile reinforcement and limit the opening of UHPC crack width, and thus their crack resistance can be effectively enhanced. Moreover, increasing the thickness of the steel plate or rebar ratio can also significantly improve the flexural capacity, stiffness, and cracking resistance of UHPC beams.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.