Abstract

β-Agarase was biotinylated and immobilized onto streptavidin-conjugated magnetic nanoparticles to provide insights into the effect of immobilization sites on β-agarase immobilization. Results showed that, compared with free enzyme, the stability of prepared immobilized β-agarases through amino or carboxyl activation were both significantly improved. However, the amino-activated immobilized β-agarase showed higher thermostability and catalytic efficiency than the carboxyl-activated immobilized β-agarase. The relative activity of the former was 65.00 % after incubation at 50 °C for 1 h, which was 1.77-fold higher than that of the latter. Additionally, amino-activated immobilization increased the affinity of the enzyme to the substrate, and its maximum reaction rate (0.68 μmol/min) was superior to that of carboxyl-activated immobilization (0.53 μmol/min). The visualization results showed that the catalytic site of β-agarase after carboxyl-activated immobilization was more susceptible to the immobilization process, and the orientation of the enzyme may also hinder substrate binding and product release. These results suggest that by pre-selecting appropriate activation sites and enzyme orientation, immobilized enzymes with higher catalytic activity and stability can be obtained, making them more suitable for the application of continuous production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call