Abstract

In this study, an enzyme immobilization method for the effective biotransformation of ginsenoside Rb1 to impart activity and stability was developed. Using a hydrolase enzyme model, β-glucosidase from Aspergillus niger, immobilization within chemically affinity-linked amino-based silica provided an immobilization efficiency 5.86-fold higher than that of free enzyme. Compared with the free enzyme, the immobilized enzyme functioned optimally at a wider pH range and had higher thermostability. The optimum pH for the free and immobilized enzymes was 5.5. The optimal reaction temperature of the immobilized enzyme was 45 °C, which was 5 °C higher than that of the free enzyme. The Michaelis constant (Km) values before and after immobilization were 0.482 mmol•L−1 and 0.387 mmol•L−1, respectively. The catalytic rate (Kcat) for the immobilized and free enzymes was 22.269 mmol•L−1and 8.800 mmol•L−1, respectively, and the catalytic efficiency (Kcat/Km) activity of the immobilized enzyme was 3.30-fold higher than that of the free enzyme. The immobilized enzyme could preserve 97 % of the activity after 45 cycles of repeated use. The high catalytic activity and significant operational stability are beneficial for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call