Abstract
To explore the physiological and biochemical mechanism of the occurrence of vitrified shoots of Populus suaveolens in tissue culture, the changes in water, chlorphyll, lignin, H2O2, phenylalanine ammonialyase (PAL), malonaldehyde (MDA), protective enzymatic systems, and some key enzymes involved in the ascorbate- glutathione cycle were comparatively studied in both normal and vitrified shoots of P. suaveolens. The results show that the lower activities of peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and PAL, and the less contents of chlorphyll, lignin, ascorbate (ASA) and reduced glutathione (GSH) as well as the lower ratios of ASA / DHA and GSH / GSSG are observed in vitrified shoots than in normal ones during the whole culture period. While in comparison with normal shoots, the higher activity of superoxide dismutase (SOD) and the more concentrations of water, H2O2, MDA, dehydroascorbate (DHA) and oxidized glutathione (GSSG) are found in vitrified shoots. Statistical analysis indicates that the enhanced activity of SOD and the decreased activities of CAT and POD as well as some enzymes involved in the ascorbate-glutathione cycle might be closely correlated to the accumulation of H2O2. The less regeneration of ASA and GSH and the lower capacity of the ascorbate-glutathione cycle observed in vitrified shoots might be due to a significant decrease in APX, MDAR, DHAR and GR activities and a decline in redox status of ASA and GSH. The decreases in chlorphyll content might result in a decline in photosynthesis. The lower activities of POD and PAL could result in the decrease of lignin synthesis and cell wall ligination, which might be the key factor leading to the increase in water content. It is concluded that the deficiency of detoxification capacity caused by the lower capacity of the ascorbate-glutathione pathway and the decreased activity of protective enzymatic system might lead to the large accumulation of H2O2 and the enhancement of membrane lipid peroxidation, which might be the main cause leading to the occurrence of vitrifying shoots of P. suaveolens in tissue culture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.