Abstract

We consider cooperative processes (quantum spin chains and random walks) in one-dimensional fluctuating random and aperiodic environments characterized by fluctuating exponents omega>0. At the critical point the random and aperiodic systems scale essentially anisotropically in a similar fashion: length (L) and time (t) scales are related as t ~ log^{1/omega}. Also some critical exponents, characterizing the singularities of average quantities, are found to be universal functions of omega, whereas some others do depend on details of the distribution of the disorder. In the off-critical region there is an important difference between the two types of environments: in aperiodic systems there are no extra (Griffiths)-singularities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.