Abstract

This study examines the effectiveness of four different fuzzy logic controllers in self-balancing wheelchairs. The controllers under consideration are Type-1 Takagi-Sugeno-Kang (TSK) FLC, Interval Type-2 TSK FLC, Type-1 Mamdani FLC, and Interval Type-2 Mamdani FLC. A MATLAB-based simulation environment serves for the evaluation, focusing on key performance indicators like percentage overshoot, rise time, settling time, and displacement. Two testing methodologies were designed to simulate both ideal conditions and real-world hardware limitations. The simulations reveal distinct advantages for each controller type. For example, Type-1 TSK excels in minimizing overshoot but requires higher force. Interval Type-2 TSK shows the quickest settling times but needs the most force. Type-1 Mamdani has the fastest rise time with the lowest force requirement but experiences a higher percentage of overshoot. Interval Type-2 Mamdani offers balanced performance across all metrics. When a 2.7 N control input cap is imposed, Type-2 controllers prove notably more efficient in minimizing overshoot. These results offer valuable insights for future design and real-world application of self-balancing wheelchairs. Further studies are recommended for the empirical testing and refinement of these controllers, especially since the initial findings were limited to four-wheeled self-balancing robotic wheelchairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.