Abstract
Abstract: The capacity design philosophy has currently become design norm for the seismic design of structural systems. it is necessary to assess the overstrength capacity of piers before proceeding with the design of the foundation and superstructure. This paper is devoted to developing deterministic procedures for the seismic analysis of substructure and foundation. Therefore, a moment-curvature approach is analysed. A parametric study is then conducted to investigate the factors that causes the seismic forces in the system. A simplified analysis methodology is put forward based on IRC SP 114; 2018. It is applicable for seismic design of bridges with a design service life of 100 years, considering Design Basis Earthquake (DBE). It has covered the seismic map and spectral acceleration graphs as specified in IS: 1893-Part-I- 2016. It also adopts the method prescribed for evaluation of liquefaction possibility, as specified in IS: 1893-Part-I- 2016. For the evaluation of seismic forces, Elastic Seismic Acceleration method, Elastic Response Spectrum method and Linear Time History method are specified. The IRC Guidelines describe the various types of special investigations to be carried out for bridges to be constructed in near field zones, skew, and curved bridges and so on. For loads and load combinations, IRC 6-2017 provides the guidelines and specifications. Objective of this code is to provide common procedure for design of bridges. It deals with the various loads such as vehicular loads, braking forces, wind load, water current forces and their combinations. Keywords: Seismic design of Bridge Substructure, IRC guidelines, Seismic design, Seismic analysis, seismic zones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have