Abstract

A 4 mm thick heat-treated aluminum alloy AA 6061-T6 has been butt welded in 1 G position using a 12-kW disk laser. A novel high magnesium content filler rod ER 4943 belonging to the 4xxx series of aluminum alloys has been used to investigate its effects on microstructure, mechanical properties and alloying elements segregation in the fusion zone. The results have also been compared with an autogenous laser butt welded joint case. A solidified microstructure has been analyzed by EBSD. It was found that additional solute content brought by filler rod into the molten pool caused a higher proportion of equiaxed grain zone after solidification due to an enhanced constitutional supercooling ahead of solid/liquid interface. For an autogenous butt welded joint, the columnar morphology sustained for a longer period and a narrower equiaxed grain zone were observed. Point analysis by an EDS revealed a higher retention of magnesium and silicon inside the solid solution with filler rod welding. In addition, the area map of magnesium also observed a denser distribution of magnesium inside the fusion zone. Both hardness and tensile strength of filler rod welded joint were higher than without filler rod welding. It is believed that a higher proportion of equiaxed grains and additional solute content within the solid solution are the primary causes of higher mechanical properties owing to hampered dislocation motion. The much desirable results obtained in terms of microstructure and mechanical properties could be of great significance to the welding industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call