Abstract

Abstract A new type of Al–Zn–Mg–Cu alloy sheets with T6 temper were welded by laser beam welding (LBW). Microstructure characteristics and mechanical properties of the joints were evaluated. Results show that grains in the heat affected zone (HAZ) exhibit an elongated shape which is almost same as the base metal (BM). A non-dendritic equiaxed grain zone (EQZ) appears along the fusion line in the fusion zone (FZ), and grains here do not appear to nucleate epitaxially from the HAZ substrate. The FZ is mainly made up of dendritic equiaxed grains whose boundaries are decorated with continuous particles, identified as the T (AlZnMgCu) phase. Obvious softening occurs in FZ and HAZ, which mainly due to the changes of nanometric precipitates. The precipitates in BM are mainly η′, while plenty of GPI zones exist in FZ and HAZ adjacent to FZ, in the HAZ farther away from FZ, η phase appears. The minimum microhardness of the joint is always obtained in FZ at different times after welding. The ultimate tensile strength of the joint is 471.1 MPa which is 69.7% of that of the BM. Samples of the tensile tests always fracture at the FZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call