Abstract

The study focuses on identifying fireburning and burnt areas in a large-scale forest fire that occurred in Xintian County, China, in October 2022. To investigate the adaptability of machine learning methods in various scenarios for mapping forest fire areas, this study presents a comparative study on the recognition and mapping accuracy of three machine learning algorithms, namely, Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN), based on Sentinel-1B and 2A imagery. Initially, three sets of pre-fire, during-fire, and post-fire remote sensing data were preprocessed. Various feature parameters from Sentinel-1B and 2A imagery were combined to identify firerelated land cover types. The experimental results revealed that: (i) During the pre-fire period, the SVM method demonstrated superior accuracy compared to the other two methods. The combination of spectral and Normalized Difference Vegetation Index (NDVI) features achieved an optimal accuracy for identifying forest areas with an overall accuracy (OA) of 93.52%. (ii) In the during-fire period, RF method exhibited higher accuracy compared to the other two methods with peak fire identification accuracy reached by combining spectral and Normalized Burn Ratio (NBR) index features at an OA of 95.43%. (iii) In the post-fire period, SVM demonstrated superior accuracy compared to other methods. The highest accuracy of 94.97% was achieved when combining spectral and radar features from Sentinel-1B imagery, highlighting the effectiveness of using spectral and radar backward scattering coefficients as feature parameters to enhance forest fire recognition accuracy for burnt areas. These findings suggest that appropriate machine learning algorithms should be employed under different conditions to obtain more precise identification of forest fire areas. This study provides technical support and empirical evidence for extracting and mapping forest fire areas while assessing damage caused by fires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.