Abstract

Atomistic simulations play a crucial role in advancing our understanding of the crack-tip processes that take place during fracture of semi-brittle materials like α-iron. As with all atomistic simulations, the results of such simulations however depend critically on the underlying atomic interaction model. Here, we present a systematic study of eight α-iron embedded atom method potentials used to model cracks subjected to plane strain mode-I loading conditions in six different crystal orientations. Molecular statics simulations are used to determine the fracture behavior (cleavage, dislocation emission, twinning) and the critical stress intensity factor KIc. The structural transformations in front of the crack tips, and in particular the occurrence of {1 1 0} planar faults, are analyzed in detail and related to the strain-dependent generalized stacking fault energy curve. The simulation results are discussed in terms of theoretical fracture criteria and compared to recent experimental data. The different potentials are ranked according to their capability to model the experimentally observed fracture behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call