Abstract

BackgroundThe human genome is constantly exposed to numerous environmental genotoxicants. To prevent the detrimental consequences induced by the expansion of damaged cells, cellular protective systems such as nucleotide excision repair (NER) exist and serve as a primary pathway for repairing the various helix-distorting DNA adducts induced by genotoxic agents. NER is further divided into two sub-pathways, namely, global genomic NER (GG-NER) and transcription-coupled NER (TC-NER). Both NER sub-pathways are reportedly involved in the damage response elicited by exposure to genotoxins. However, how disruption of these sub-pathways impacts the toxicity of different types of environmental mutagens in human cells is not well understood.ResultsTo evaluate the role of NER sub-pathways on the cytotoxic effects of mutagens, we disrupted XPC and CSB to selectively inactivate GG-NER and TC-NER, respectively, in human lymphoblastoid TK6 cells, a standard cell line used in genotoxicity studies. Using these cells, we then comparatively assessed their respective sensitivities to representative genotoxic agents, including ultraviolet C (UVC) light, benzo [a] pyrene (B(a)P), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), γ-ray, and 2-acetylaminofluorene (2-AAF). CSB−/− cells exhibited a hyper-sensitivity to UVC, B(a)P, and MeIQx. On the other hand, XPC−/− cells were highly sensitive to UVC, but not to B(a)P and MeIQx, compared with wild-type cells. In contrast with other genotoxins, the sensitivity of XPC−/− cells against PhIP was significantly higher than CSB−/− cells. The toxicity of γ-ray and 2-AAF was not enhanced by disruption of either XPC or CSB in the cells.ConclusionsBased on our findings, genetically modified TK6 cells appear to be a useful tool for elucidating the detailed roles of the various repair factors that exist to combat genotoxic agents, and should contribute to the improved risk assessment of environmental chemical contaminants.

Highlights

  • Cellular DNA is continuously exposed to various environmental agents such as ultraviolet (UV) light from the sun, ionizing radiation, chemical compounds found in foods, and endogenous oxidative stress

  • nucleotide excision repair (NER) can recognize almost an infinite variety of DNA adducts, including cyclobutane pyrimidine dimers induced by ultraviolet light (UV), covalent DNA adducts formed by carcinogens such as heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs), DNA crosslinks, and oxidative DNA damage from endogenous reactive oxygen species

  • To better understand the role of NER sub-pathways on the cytotoxicity of genotoxic agents, we developed human lymphoblastoid TK6-isogenic cells lacking the function of xeroderma pigmentosum group C (XPC) or Cockayne syndrome protein B (CSB) to disrupt global genomic NER (GG-NER) or transcription-coupled NER (TC-NER), respectively

Read more

Summary

Introduction

Cellular DNA is continuously exposed to various environmental agents such as ultraviolet (UV) light from the sun, ionizing radiation, chemical compounds found in foods, and endogenous oxidative stress. This accumulation of DNA damage can be detrimental to cell viability because of the enhanced genomic instability, otherwise leading to cellular transformation and tumorigenesis. To prevent the detrimental consequences induced by the expansion of damaged cells, cellular protective systems such as nucleotide excision repair (NER) exist and serve as a primary pathway for repairing the various helix-distorting DNA adducts induced by genotoxic agents. How disruption of these sub-pathways impacts the toxicity of different types of environmental mutagens in human cells is not well understood

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call