Abstract
To address the under-researched risk of bisphenols (BPs) in e-cigarette liquids, comprehensive studies have been conducted to propose optimum sample preparation and analysis methods. To determine twelve BPs in refill liquids for e-cigarettes, three sample preparation methods based on distinct operational and working principles were employed. These included fabric phase sorptive extraction (FPSE), ultrasound-assisted solvent extraction of porous membrane-packed samples (UASE-PMS) and solid phase extraction (SPE) utilizing molecularly imprinted polymers (MIPs) technology. Each extraction method was combined with ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Key parameters of FPSE and UASE-PMS procedures were optimized. This optimization included selection of the FPSE membrane types, durations of extraction and the choice solvents. Comprehensive validation was conducted, demonstrating linearity across a range from 2 to 60 ng/mL for all BPs (BPS, BPA, BPF, BPE, BPB, BPC, BPZ, BPFL, BPBP, BPP, BPG and BPM). Determination coefficients were above 0.9913, signifying linear relationship. The limits of detection (LODs) were established below 0.90 ng/mL, while the limits of quantification (LOQs) were lower than 2.5 ng/mL. Notably, the method based on UASE-PMS was successfully applied to the analysis of refill liquids for e-cigarettes samples. A comparative analysis of the methods highlighted variances in precision, accuracy, and applicable aspects, such as adjustment of parameters, sample preparation time, cost, handling, availability and possible limitations. Three methods have been identified as suitable for analysing BPs in e-cigarette refill liquids, highlighting the necessity to examine their presence in these products.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.