Abstract

Diamondlike carbon (DLC) films doped with the same fraction of erbium and erbium oxide were prepared by using 248 nm KrF pulsed laser deposition system. The effects of erbium and erbium oxide on the surface morphology, microstructures, and mechanical property of DLC were investigated. Transmission electron microscopy showed that both erbium and erbium oxide retained their initial oxidation states while embedded as metal or metal-oxide nanoclusters in an amorphous matrix. Atomic force microscopy showed that erbium-doped and erbium oxide-doped DLC films were smooth with rms of less than 0.2 nm and closely resembled pure DLC film. The Raman analysis showed broad peaks centering around 1550 cm−1 on both samples. The deconvoluted Raman spectra showed that the ID/IG value of DLC film increased from 0.38 to ∼0.55 in the presence of erbium and erbium oxide, and the estimated sp3 content for the DLC nanocomposite films was ∼56%–57%. X-ray photoelectron spectroscopy (XPS) confirmed that the C 1s peaks for DLC nanocomposite were slightly shifted from 285.2 eV (diamond) to 284.5 eV (graphite). The deconvolution of XPS spectra further confirmed the amount of sp3 content and revealed the presence of a higher fraction of SiC bonding in erbium oxide-doped DLC film. Microscratch tester results showed that the presence of erbium oxide improved the adhesion strength of DLC film from ∼1.72 to ∼2.19 N, which was more effective than erbium at the same concentration (∼1.89 N). The coefficients of friction of the erbium-doped DLC and erbium oxide-doped DLC films were similar to that of pure DLC. Erbium and erbium oxide showed similar influence on the surface roughness, coefficient of friction, and sp3 content on DLC films, but improved adhesion strength, which was correlated with the SiC bonding states, was observed on erbium oxide-doped DLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.