Abstract

AbstractUltra high molecular weight polyethylene fiber is a very promising material for making light‐weight high strength and high impact resistant composites, especially for ballistic protective shields. Three commercially available materials designed specifically for ballistic applications are Spectra® woven cloth, Dyneema Fraglight® nonwoven felt, and Spectra Shield® Plus PCR prepreg were chosen for parallel comparisons. The high‐temperature high‐pressure sintering process was applied to all three materials. The physical, thermomechanical, and microstructural properties of the consolidated products were studied and compared, including their crystallinity, molecular orientation, impact resistance, interlaminar adhesion, flexural properties, and thermoformability. The differences in these materials and their structures are reflected in the different properties of the final products. The influence of different processing conditions on the properties also differs for each material. It is concluded that matrix free Spectra cloth composite has dominant advantages over the other two materials. POLYM. ENG. SCI., 47:1544–1553, 2007. © 2007 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.