Abstract

Different photon interaction parameters viz. linear attenuation coefficient, mass attenuation coefficient, penetration depth, equivalent atomic number, exposure buildup factor have been computed for seven different concretes (ordinary, hematite-serpentine, ilmenite-limonite, basalt-magnetite, ilmenite, steel-scrap and steel magnetite) in the energy region of 0.015-15.0MeV. The computed parameters were studied as a function of incident photon energy, chemical composition and penetration depth of the selected concretes. It has been observed that among the selected concretes, steel magnetite offers maximum value for linear attenuation coefficient, mass attenuation coefficient, equivalent atomic number and least values in terms of penetration depth equivalent to mean free path and exposure buildup factors. Hence, it is concluded that it offers better shielding among the selected concretes. It is expected that in case of any nuclear accident, the presented buildup factor data may be helpful in estimating the effective dose given to people living in buildings constructed from one of the selected concretes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call