Abstract

Abstract Brazilian moist forests and savannas are some of the most species-rich biomes in the Neotropics. In the transition zones between these regions, ecotones often accumulate even higher taxonomic diversity. However, whether these ecotonal communities consist of overlapping species widespread from the neighbouring biomes or a specific set of locally adapted species still needs to be clarified. Regional differences in species richness may be influenced by factors such as species' environmental tolerances, life forms, or species’ range sizes. To investigate the species richness found in ecotones, we used the ‘milk-weed’ family (Apocynaceae), which comprises both widespread and narrowly distributed trees, lianas, and shrubs, as a model to evaluate if (i) their observed richness in ecotones is promoted by widespread species or by locally adapted species; (ii) trees, lianas, and shrubs show different richness patterns in savannas, ecotones, and forests; and (iii) species found in ecotones have broader environmental tolerances than other species in the family. We used a taxonomically curated georeferenced dataset to compare the range sizes of 643 species of Apocynaceae from 73 genera listed for Brazil, comprising 298 species with a liana life form and 345 trees, herbs, or shrubs. We recorded 335 predominantly forest species, 56 savanna species, and 152 ecotone species, for which we quantified species richness, areas of occurrence, precipitation, and temperature ranges and tested for differences in range sizes and environmental tolerances between habits and ecoregions. Our results indicate that (i) Apocynaceae species occurring in ecotones have wider geographical ranges than species not occurring in ecotones; (ii) lianas showed higher area-weighted richness in ecotones than other life forms; and (iii) species found in ecotones had broader environmental tolerances than species restricted to moist forests or savannas. These results indicate that the species richness found in ecotones between savannas and moist forests in Brazil is not necessarily a consequence of higher endemism and local adaptation but may also be a result of overlapping ranges of widespread species typically associated with neighbouring biomes. Together, our findings add to our understanding of ecotones and biomes as continuous, gradual biogeographical transitions instead of sharply defined ecological units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call