Abstract
1. While it is clear that land‐use change significantly impacts the taxonomic dimension of soil biodiversity, how the functional dimension responds to land‐use change is less well understood.2. This study examined how the transformation of primary forests into rubber tree monocultures impacts individual termite species and how this change is reflected in termite taxonomic and functional α‐diversity (within site) and β‐diversity (among sites).3. Overall, individual species responded strongly to land‐use change, whereby only 11 of the 27 species found were able to tolerate both habitats. These differences caused a 27% reduction in termite taxonomic richness and reduced taxonomic β‐diversity in rubber plantations compared with primary forests. The study also revealed that the forest conversion led to a shift in some termite species with smaller body size, shorter legs and smaller mandibular traits. Primary forests exhibited higher functional richness and functional β‐diversity of termite species, indicating that functional traits of termite species in rubber plantations are more evenly distributed.4. The present study suggests that forest conversion does not merely decrease taxonomic diversity of termites, but also exerts functional trait filtering within some termite species. The results affirm the need for biodiversity assessments that combine taxonomic and functional indicators when monitoring the impact of land‐use change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.