Abstract
This paper reports a highly sensitive homogenous method for comparative quantification of nucleic acids based on single-molecule detection (SMD) and molecular beacons (MBs). Two different color MBs were used to perform a separation-free comparative hybridization assay for simultaneous quantification of both target and control strands. A fluorescent burst, emitted from a single hybrid when it passes through a minuscule laser-focused region, is detected with high signal-to-noise ratio (SNR) by using single-molecule fluorescence spectroscopy. Targets are quantified via counting of discrete fluorescent bursts. The high SNR achieved in both detection channels overcame the complications of fluorescent variability usually observed in dual-color ensemble measurements. In comparison with the conventional ensemble methods, this method improved the detection limit by 3 orders of magnitude and reduced the probe consumption by 6 orders of magnitude, facilitating a highly sensitive approach for comparative quantification of nucleic acids and offering great promise for genomic quantification without amplification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.