Abstract

The gram-negative bacterium Vibrio (Listonella) anguillarum (VA) is the causative agent of vibriosis, a terminal hemorrhagic septicemia affecting the aquacultural industry across the globe. In the current study we used label-free quantitative proteomics to investigate how VA adapts to conditions that mimic defined aspects of vibriosis-related stress such as exposure to oxidative stress (H2O2), exposure to humoral factors of innate immunity through incubation with Atlantic salmon serum, and iron deprivation upon supplementation of 2,2′-dipyridyl (DIP) to the growth medium. We also investigated how regulation of virulence factors may be governed by the VA growth phase and availability of nutrients. All experimental conditions explored revealed stress-specific proteomic adaption of VA and only nine proteins were found to be commonly regulated in all conditions. A general observation made for all stress-related conditions was regulation of multiple metabolic pathways. Notably, iron deprivation and exposure to Atlantic salmon serum evoked upregulation of iron acquisition mechanisms. The findings made in the present study represent a source of potential virulence determinants that can be of use in the search for means to understand vibriosis. SignificanceVibriosis in fish and shellfish caused by V. anguillarum (VA) is responsible for large economic losses in the aquaculture sector across the globe. However, not much is known about the defense mechanism of this pathogen to percept and adapt to the imposed stresses during infection. Analyzing the response of VA to multiple host-related physiochemical stresses, the quantitative proteomic analysis of the present study indicates modulation of several virulence determinants and key defense networks of this pathogen. Our findings provide a theoretical basis to enhance our understanding of VA pathogenesis and can be employed to improve current intervention strategies to control vibriosis in aquaculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call