Abstract

Structural and magnetic phase transformations and magnetocaloric effect of Mn and Co substitutions by Cu in MnCoGe have been investigated using X-ray diffraction, differential scanning calorimetry, and magnetization measurements. Increase in Cu concentration reduces the martensitic structural and magnetic phase transition temperatures. However, nearly doubling of the amount of Co substitution is required compared to Mn for an equivalent change in the structural transition temperature. A giant magnetocaloric effect, -ΔSMmax ≈ 50 J kg−1K−1 for Δμ0H = 5 T, resulting from coupling of concomitant structural and magnetic transformations near room temperature has been obtained for a sample with around 11 at% Mn-substitution. Fine tuning of Cu concentration (20 at%) in the case of Co substitution resulted in concurrent structural and magnetic transitions at around 260 K. However, the absence of a magnetostructural coupling resulted in peak entropy change of less than 4 J kg−1K−1. Samples with 15 at% or higher Co-substitution showed complex magnetic behavior and multiple magnetic transitions. The nature of magnetic phase transitions in both Co- and Mn-substituted samples have been investigated and phase diagrams for both sets of samples have been derived based on calorimetry and magnetometry results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call