Abstract

Distributed evolutionary computation has been efficiently used, in last decades, to solve complex optimization problems. Island model (IM) is considered as a distributed population paradigm employed by evolutionary algorithms to preserve the diversification and, thus, to improve the local search. In this article, we study different island model techniques integrated in to particle swarm optimization (PSO) algorithm in order to overcome its drawbacks: premature convergence and lack of diversity. The first IMPSO approach consists in using the migration process in a static way to enhance the police migration strategy. On the other hand, the second approach, called dynamic-IMPSO, consists in integrating a learning strategy in case of migration. The last version called constrained-IMPSO utilizes a stochastic technique to ensure good communication between the sub-swarms. To evaluate and verify the effectiveness of the proposed algorithms, several standard constrained and unconstrained benchmark functions are used. The obtained results confirm that these algorithms are more efficient in solving low-dimensional problems (CEC’05), large-scale optimization problems (CEC’13) and constrained problems (CEC’06), compared to other well-known evolutionary algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.