Abstract
Crystalline SiC appears in many different polytypes of cubic, hexagonal, and rhombohedral structures. These polytypes are colorless transparent or exhibit various colors evoked by doping with different elements. Dense sintered S-SiC (solid-state sintered) and LPS-SiC (liquid-phase sintered) were known in black color only, but recently a new liquid-phase sintering process was developed to achieve green LPS-SiC as well. Whereas in S-SiC the polycrystalline grains are homogeneously doped with 0.2 wt% boron, in the LPS-types the SiC grains contain up to 1.2 wt% Al, 0.3 wt% N and 0.1% O having a structure comprising a SiC(Al,N,O) mixed crystal shell and a pure SiC core. The difference in color of polycrystalline SiC bodies seems to result from small amounts of carbon in the sintered specimens (0.2–0.5 wt% C). Green sintered LPS-SiC is obtained, after free carbon has largely been removed by a suitable oxidation process prior to sintering. To get information on the various types of sintered SiC, the optical extinction and absorption spectra of black and green sintered SiC and green Acheson-SiC single crystals were quantitatively measured in the spectral range between about 1.4 and 4.1 eV. While the absorption coefficients of the single crystals vary between about 50 and 200 cm −1, the extinction coefficients of the sintered materials are between 2000 and 7000 cm −1. Nevertheless the absorption bands in the more or less transparent region of the green and black materials can easily be attributed to one another. Hence, the reason for these absorption processes must be assumed to be the same. In the same way, position and slope of the absorption edges are correlated amongst green or black SiC, irrespective of, whether the material is single crystal or sintered.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have