Abstract
The numerical investigation of bioconvective nanofluid (NF) flow, which involves gyrotactic microbes and heat and mass transmission analysis above an inclined extending axisymmetric cylinder, is presented in this study. The study aims to investigate the bioconvection flow of nanofluid under the influence of heat sources/sinks. Through proper transformation, all partial differential equations are transformed into a non-linear ODE scheme. A new set of variables is presented in the directive to get the first-order convectional equations and then solved numerically using bvp4c MATLAB, embedded in the function. The proposed model is validated after calculating the error estimation and obtaining the residual error. The influence of various factors on the velocity, energy, concentration, and density of motile microorganisms is examined and studied. The analysis describes and addresses all physical measures of concentration such as Skin Friction (SF), Sherwood number, the density of motile microorganisms, and Nusselt number. To validate the present study, a comparison is conducted with previous studies, and excellent correspondence is found. In addition, the ND-Solve approach is utilized to confirm the bvp4c. The mathematical model is confirmed through error analysis. This study provides the platform for industrial applications such as cooling capacity polymers, heat exchange, and chemical production sectors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have