Abstract

The Ca(2+)-binding protein regucalcin (RGN) is crucial for the regulation of Ca(2+) ion homeostasis and signal transduction of cells. It is involved in the regulation of Ca(2+)-dependent protein kinases and Ca(2+) pump enzymes in cell membranes. Comparative transcriptome analysis in healthy fish of two aquacultured rainbow trout (Oncorhynchus mykiss) lines (BORN, TCO) varying in susceptibility to environmental stress identified significant differences in the expression of the RGN gene. Therefore, we firstly determined the full genomic DNA and cDNA sequence of RGN gene from rainbow trout and comparatively investigated the complete cDNA sequence in another salmonid fish dedicated for local aquaculture, the maraena whitefish (Coregonus marena). The sequence coding region translates for proteins of 298 and 299 amino acids (aa), respectively, indicating a high conservation of RGN proteins (95.7% aa identity) between the two related salmonids. In the second place, we generated RGN gene expression profiles after pathogen (Aeromonas salmonicidae subsp. salmonicida) and temperature (8 and 23°C) challenge in the two rainbow trout lines using salmon microarrays and quantitative RT-PCR. The profiles not only verified initially detected gene expression differences, they also display a tissue specific gene expression in dependence from the stressor and time. The differences in gene expression support our assumption that RGN might play a role in recovery of rainbow trout after environmental stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.