Abstract

Regorafenib (REG) is a diphenylurea derivative oral multikinase inhibitor. It plays an important role in the treatment of colorectal cancer, metastatic gastrointestinal stromal tumors, and hepatocellular carcinoma. Molecularly imprinted polymer (MIP) based glassy carbon electrodes (GCE) were fabricated using photopolymerization (PP) and thermal polymerization (TP) methods. The characterizations of the proposed sensors were investigated by electrochemical techniques, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Several parameters were studied in detail for the optimum conditions of MIP-based sensors, such as dropping volume, photopolymerization and thermal polymerization durations, removal medium and time, and rebinding time. Both sensors' analytical validation and electroanalytical performance comparison were made in different REG concentrations ranging between 0.1 nM and 2.5 nM in standard solution and commercial human serum samples. The limit of detection (LOD) of PP-REG@MIP/GCE and TP-REG@MIP/GCE were 9.13 × 10-12 M and 1.44 × 10-11 M in standard solutions and 2.04 × 10-11 M and 2.02 × 10-11 M in serum samples, respectively. The applicability of the proposed sensors was tested using commercial human serum samples and pharmaceutical form of REG with high recovery values (PP-REG@MIP/GCE and TP REG@MIP/GCE sensors, 99.56-101.59%, respectively). The selectivity of the sensor for REGwas investigatedin the presence of similar molecules: Sorafenib, Sunitinib, Nilotinib, and Imatinib. The developed techniques and sensors checked the possible biological compounds and ions' effects and storage stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call