Abstract
Long-wave infrared (LWIR) emissions of laser-induced plasma on solid potassium chloride and acetaminophen tablet surfaces were studied using both a one-dimensional (1-D) linear array detection system and, for the first time, a two-dimensional (2-D) focal plane array (FPA) detection system. Both atomic and molecular infrared emitters in the vicinity of the plasma were identified by analyzing the detected spectral signatures in the infrared region. Time- and space-resolved long-wave infrared emissions were also studied to assess the temporal and spatial behaviors of atomic and molecular emitters in the plasma. These pioneer temporal and spatial investigations of infrared emissions from laser-induced plasma would be valuable to the modeling of plasma evolutions and the advances of the novel LWIR laser-induced breakdown spectroscopy (LIBS). When integrated both temporally (≥200 µs) and spatially using a 2-D FPA detector, the observed intensities and signal-to-noise-ratio (SNR) of single-shot LWIR LIBS signature emissions from intact molecules were considerably enhanced (e.g., with enhancement factors up to 16 and 3.76, respectively, for a 6.62 µm band of acetaminophen molecules) and, in general, comparable to those from the atomic emitters. Pairing LWIR LIBS with conventional ultraviolet-visible-near infrared (UV/Vis/NIR) LIBS, a simultaneous UV/Vis/NIR + LWIR LIBS detection system promises unprecedented capability of in situ, real-time, and stand-off investigation of both atomic and molecular target compositions to detect and characterize a range of chemistries.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have