Abstract

Owing to the relentless growth of sewage sludge production, achieving low-carbon development in sewage sludge treatment and disposal (STD) is becoming increasingly challenging and unpredictable. However, the STD varied spatially, and city-specific analysis is deemed necessary for sustainable evaluation. Therefore, a lifecycle-based greenhouse gas (GHG), energy, and economic analysis were conducted by considering six local STD alternatives in Wuhan City, China, as a case study. The findings indicated anaerobic digestion combined with digestate utilization for urban greening (ADL) and incineration in existing power plants (INCP) exhibited the least GHG emissions at 34.073 kg CO2 eq/FU and 644.128 kg CO2 eq/FU, while INCP generated the most energy at −2594 kW.h/FU. The economic evaluation revealed that ADL and INCP were more beneficial without accounting for land acquisition. Scenario analysis showed that the energy recovery from ADL and INCP is significantly influenced by the hydrolysis yielding rate and sludge organic content. Perturbation sensitivity indicates that regional emission factor of electricity and electricity fee highly influence the overall GHG emission and cost. The results of this study could assist policymakers in identifying viable solutions to the cities experiencing the same sludge treatment burdens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call