Abstract

Polymer films based on biodegradable polymers, polyethylene (PE) and modified PE with oxo-degradable additive were prepared by film blowing. Carbon black (1%) was added to all the films. Commercial biodegradable Ecovio® and Mater-Bi® samples were used. Mechanical properties, soil burial degradation and surface wettability were investigated, before and after UV irradiation. Chemical modifications induced by UV and soil degradation, or a synergic effect, were highlighted by Attenuated Total Reflection-Fourier Transform Infra-Red (ATR-FTIR). Photo-oxidized film samples with an elongation at break equal to 50% and 0.5 the initial value were selected for the soil burial degradation test at 30 °C. Weight loss measurements were used to follow biodegradation in soil. Predictably, the degradation in soil was higher for biodegradable polymer-based films than for the PE-based ones. UV irradiation increased surface wettability and encouraged the disintegration in soil of all the samples. In fact, photo-oxidation produced a molar mass reduction and hydrophilic end groups, thus increasing surface erosion and weight loss. This paper not only supplies new criteria to evaluate the performance of biodegradable films in agriculture, before and after lifetime, but also provides a comparative analysis on the soil burial degradation behaviour with traditional ones.

Highlights

  • Polymer films are widely applied in agriculture [1]

  • This paper supplies new criteria to evaluate the performance of biodegradable films in agriculture, before and after lifetime, and provides a comparative analysis on the soil burial degradation behaviour with traditional ones

  • We investigated the photo-oxidative and soil burial degradation of irrigation tubes based on biodegradable polymer blends under controlled conditions [14]

Read more

Summary

Introduction

Polymer films are widely applied in agriculture [1]. The main applications of plastic films are for greenhouses and mulching. The more extensively used polymers for these applications are polyethylenes (LDPE and LLDPE) and the copolymer poly(ethylene-vinyl acetate) (EVA). The importance of these films consists in the protection of the cultures and creation of a microclimate that strongly improves the yield of the plants. At the end of the service life, all these films must be collected to avoid the dissemination in the ground with a negative environmental impact [2]. Recycling of these films is relatively simple because of the easy differentiated collection for the similar composition. The properties of the Polymers 2020, 12, 753; doi:10.3390/polym12040753 www.mdpi.com/journal/polymers

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call