Abstract

The poor matching performance of a carbon skateboard and contact wire leads to abnormal wear of a rigid pantograph–catenary system. However, an effective response strategy for reducing the frequency of abnormal wear of the arch network has not been achieved. In this article, the friction and wear properties of pure carbon and copper-impregnated carbon skateboards are used to investigate and compare the friction properties under different working conditions. The experimental results show that the contact resistance of the pure carbon skateboard/contact wire increases from 12 mΩ to 45 mΩ with increasing current and shows an overall low friction coefficient. The contact resistance of the copper-impregnated carbon skateboard/contact wire fluctuates in the range of 4 mΩ to 16 mΩ, with a relatively high friction coefficient. A high current density accelerates the electrical wear behavior and temperature increase of the interface of the pure carbon skateboard/contact wire. A matching strategy of carbon skateboard and contact wire is proposed by comparing the friction coefficient, contact resistance, and wear rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call