Abstract
Purified membrane vesicles were treated with various reagents specific for different amino acid side-chains. Titration of sulfhydryl groups with specific reagents shows that the sulfhydryl content of membrane vesicles as estimated directly is similar to that found by treating spheroplasts or cells and then isolating the membrane vesicles. The blocking of sulfhydryl groups specifically inhibits the α-methylglucoside transport system (phosphotransferase system), whereas the glycerophosphate acylation system is not affected. The kinetics of inhibition of the first system show that a high reactivity of the sulfhydryl groups is involved. Inhibition of the acyltransferase activity by sulfhydryl reagents occurs only on partial denaturation of the membranes induced by mild sonication, heat or toluene treatment. The Inhibition is at the level of the glycerol 3-phosphate:acyl thioester acyltransferase. The effects of sonication and/or sulfhydryl reagents were measured by sulfhydryl titration, by assays of NADH oxidase and d-lactate dehydrogenase activities, as well as by 1-anilino-8-naphthalene sulfonate binding. The results support the hypothesis that the acyltransferase system is embedded within the membrane and that the readily accessible permease system is closer to (or at) the surface of the membrane.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have