Abstract

Pseudomorphic Al0.22Ga0.78As/In0.16Ga0.84As/Al0.22Ga0.78As double heterojunction high electron mobility transistors (DH-HEMTs) fabricated with different gate-formation structures of a single-recess gate (SRG), a double-recess gate (DRG) and a field-plate gate (FPG) were comparatively investigated. FPG devices show the best breakdown characteristics among these devices due to great reduction in the peak electric field between the drain and gate electrodes. The measured gate–drain breakdown voltages defined at a 1 mA mm−1 reverse gate–drain current density were −15.3, −19.1 and −26.0 V for SRG, DRG and FPG devices, respectively. No significant differences in their room-temperature common-source current–voltage characteristics were observed. However, FPG devices exhibit threshold voltages being the least sensitive to temperature. Threshold voltages as a function of temperature indicate a threshold-voltage variation as low as −0.97 mV K−1 for FPG devices. According to the 2.4 GHz load–pull power measurement at VDS = 3.0 V and VGS = −0.5 V, the saturated output power (POUT), power gain (GP) and maximum power-added efficiency (PAE) were 10.3 dBm/13.2 dB/36.6%, 11.2 dBm/13.1 dB/39.7% and 13.06 dBm/12.8 dB/47.3%, respectively, for SRG, DRG and FPG devices with a pi-gate in class AB operation. When the FPG device is biased at a VDS of 10 V, the saturated power density is more than 600 mW mm−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call