Abstract

We report an in vitro study comparing the effectiveness of clot removal and clot fragmentation of five embolectomy systems. A flow model was embolized with fresh and old thrombi, occluding an inner diameter of 2-5 mm simulating internal carotid artery (ICA), basilar artery (BA) and middle cerebral artery (MCA) branch occlusion. Embolectomy was performed using five retrieval systems: CATCH (Balt), Merci retriever (Concentric), InTime and Attracter (Boston Scientific), and the Phenox Clot Retriever (Phenox). Clot removal and evidence and type of thrombus fragmentation and distal embolization were recorded. There were no observable differences attributable to thrombus age. The Merci, CATCH and Phenox Clot Retriever were equally able to mobilize and remove thrombi with the exception of one particularly firm clot. There were marked differences in terms of thrombus fragmentation and distal embolization. All devices produced micro- and macrofragments during penetration and retrieval. The Phenox Clot Retriever was able to filter fragments. The InTime and Attracter devices failed to retrieve thrombi in this model and achieved partial removal at best with a tendency towards thrombus displacement and fragmentation. Within limits, the experimental setup was appropriate for generating occlusions of diameter 2-5 mm of various lengths, simulating ICA, BA and MCA thromboembolism. In this model, thrombus mobilization appeared to be less dependent upon the individual design of the retrieval system than on thrombus fragmentation. The ability to prevent distal embolization is, however, strongly dependent on the ability of a thrombectomy device to capture fragments that are generated during removal of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.