Abstract

Rifamycins are mainstay agents in treatment of many widespread diseases, but how an improved rifamycin producer can be created is still incompletely understood. Here, we describe a comparative genomic approach to investigate the mutational patterns introduced by the classical mutate-and-screen method in the genome of an improved rifamycin producer. Comparing the genome of the rifamycin B overproducer Amycolatopsis mediterranei HP-130 with those of the reference strains A. mediterranei S699 and U32, we identified 250 variations, affecting 227 coding sequences (CDS), 109 of which were HP-130-specific since they were absent in both S699 and U32. Mutational and transcriptional patterns indicated a series of genomic manipulations that not only proved the causative effect of mutB2 (coding for methylmalonyl-CoA mutase large subunit) and argS2 (coding for arginyl tRNA synthetase) mutations on the overproduction of rifamycin, but also constituted a rational strategy to genetically engineer a reference strain into an overproducer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.