Abstract
Proteolytic enzymes are implicated in multiple physiological and pathological processes. The availability of the sequence of the chimpanzee genome has allowed us to determine that the chimpanzee degradome—the repertoire of protease genes from this organism—is composed of at least 559 protease and protease-like genes and is virtually identical to that of human, containing 561 genes. Despite the high degree of conservation between both genomes, we have identified important differences that vary from deletion of whole genes to small insertion/deletion events or single nucleotide changes that lead to the specific gene inactivation in one species, mostly affecting immune system genes. For example, the genes encoding PRSS33/EOS, a macrophage serine protease conserved in most mammals, and GGTLA1 are absent in chimpanzee, while the gene for metalloprotease MMP23A, located in chromosome 1p36, has been specifically duplicated in the human genome together with its neighbor gene CDC2L1. Other differences arise from single nucleotide changes in protease genes, such as NAPSB and CASP12, resulting in the presence of functional genes in chimpanzee and pseudogenes in human. Finally, we have confirmed that the Trypanosoma lytic factor HPR is inactive in chimpanzee, likely contributing to the susceptibility of chimpanzees to T. brucei infection. This study provides the first analysis of the chimpanzee degradome and might contribute to the understanding of the molecular bases underlying variations in host defense mechanisms between human and chimpanzee.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have